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ABSTRACT

Land surface air temperature products have been essential for monitoring the evolution of the climate

system. Before a temperature dataset is included in such analyses, it is important that nonclimatic influences

be removed or changed so that the dataset is considered to be homogenous. These inhomogeneities include

changes in station location, instrumentation, and observing practices. Many homogenized products exist on

themonthly time scale, but few daily and weekly products exist. Recently, a submonthly homogenized dataset

has been developed using data and software fromNOAA’sNational Centers for Environmental Information.

Homogeneous daily data are useful for identification and attribution of extreme heat events. Projections of

increasing temperatures are expected to result in corresponding increases in the frequency, duration, and

intensity of such events. It is also established that heat events can have significant public health impacts,

including increases in mortality and morbidity. The method to identify extreme heat events using daily

homogeneous temperature data is described and used to develop a climatology of heat event onset, length,

and severity. This climatology encompasses nearly 3000 extreme maximum and minimum temperature

events across the United States since 1901. A sizeable number of events occurred during the Dust Bowl

period of the 1930s; however, trend analysis shows an increase in heat event number and length since 1951.

Overnight extreme minimum temperature events are increasing more than daytime maximum tempera-

tures, and regional analysis shows that events are becoming much more prevalent in the western and

southeastern parts of the United States.

1. Introduction

a. Overview of climate monitoring

As global mean temperatures have increased (Lawrimore

et al. 2011;Morice et al. 2012; Hansen et al. 2010; Rohde

et al. 2013; Menne et al. 2018), a corresponding in-

crease in the frequency and severity of heat waves

has occurred in many parts of the world (Meehl et al.

2009, 2016; Luber andMcGeehin 2008). In the United

States, results have shown an increasing trend in re-

cent decades for the spatial extent of extreme minimum

and maximum temperature. Higher-than-normal maxi-

mum temperatures (upper 10th percentile for the pe-

riod of record) covered more than 20% of the contiguous

United States (CONUS) for 12 of the 27 years since 1990.

Warm extremes in minimum temperature have been

even more widespread in recent decades. More than

70% of CONUS was affected by much-above-normal

minimum temperatures (upper 10th percentile for

the period of record) in 2015 and 2017 (NCEI 2018a).

Global temperature reports produced from climate

monitoring agencies, such as those at the National

Oceanic and Atmospheric Administration (NOAA) Na-

tional Centers for Environmental Information (NCEI),

only depict climate information at the calendar monthly

scale using available station data reporting each month

(Vose et al. 2014). While useful, many sectors that use

climate data, including energy, health, and agriculture,

are interested in shorter time scales or time scales not

tied to calendar months (Perkins and Alexander 2013).

The gridded monthly products produced by NCEI

are derived from the Global Historical Climatology

Network-Daily (GHCN-D) dataset (Menne et al. 2012),Corresponding author: Jared Rennie, jared@ncics.org
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which is a well-maintained dataset of daily climate

summaries, with over 20 000 locations reporting daily

temperatures in the United States. GHCN-D com-

prises multiple data sources, including the Coopera-

tive Observer Program (COOP) and the Automated

Surface Observing System (ASOS). All stations run

through a strict set of quality assurance procedures to

identify erroneous observations (Durre et al. 2010).

b. Overview of homogenization methods

A limitation of GHCN-D is that these data are not

homogenized (Menne et al. 2012). Before a temperature

dataset is included in the calculation of long-term

climate trends, it is important nonclimatic influences

be assessed and minimized if possible so the dataset is

considered sufficiently homogenous for use in estab-

lishing long-term trends and variations (Menne et al.

2009; Menne and Williams 2009; Menne et al. 2010;

Williams et al. 2012). Examples of inhomogeneities in

the United States include conversion from liquid-in-

glass thermometers to digital thermistors in the 1980s,

transition of observation time from afternoon to morn-

ing, station moves, and instrument changes. Very few

datasets are free of these influences and therefore re-

quire homogenization schemes. NCEI uses the pairwise

homogeneity adjustment (PHA; Menne and Williams

2009) algorithm to remove biases in their monthly re-

cords. The PHA runs in two phases. The first, break-

point detection, looks for statistically significant shifts

in the time series. The second, attribution, will attempt

to determine size of the shift, and apply adjustments

to resolve the inhomogeneity. The PHA utilizes infor-

mation about a particular station (known as metadata)

to help train the model in finding breakpoints.

Validation studies have shown the PHA consistently

produces data closer to the true climate signal. Williams

et al. (2012) used randomized subsets of data in the

United States and showed adjustments matched 8 dif-

ferent benchmark analogs of monthly data. It was also

determined the PHA can accurately produce results with

or without station metadata. Hausfather et al. (2016)

showed PHA output match well with nearby sta-

tions in theU.S. Climate Reference Network (USCRN;

Diamond et al. 2013). USCRN stations are sited in

areas away from urban influence and observe tem-

perature using three independent measurements. As a re-

sult, no adjustments are applied to USCRN data and they

are considered pristine. By showing monthly adjusted data

match appropriate reference networks and analogs,

homogenization schemes such as the PHA are proved

effective at removing artificial discontinuities in the data.

While many homogenized products exist on the

monthly time scale (Lawrimore et al. 2011; Morice et al.

2012; Hansen et al. 2010; Rohde et al. 2013; Menne et al.

2018; Vincent et al. 2012), few daily products exist. One

of the reasons is due to the complication of removing

breakpoints that are truly inhomogeneous because of a

change in observing practice rather than solely by chance.

An example could be a cold front sweeping over an

area, generating a sharp change in temperature over a few

days. The other issue relates to resolving these break-

points by applying a statistically significant adjustment.

Not only is it difficult to determine where and how to

adjust daily data, previous studies have shown the ad-

justment values can differ depending on the model used

(Mestre et al. 2011; Della-Marta andWanner 2006). That

being said, recent attempts have been made to homoge-

nize daily temperature data (Vincent and Zhang 2002;

Trewin 2013; Xu et al. 2013). However, these are local-

ized to a particular country (Canada, Australia, and

China, respectively). These daily adjustment procedures

have different methodologies, including applying daily

adjustments from changepoint detection and shift size in

the monthly data (Vincent and Zhang 2002), as well as

adjusting daily data using appropriate reference series

and metadata (Trewin 2013; Xu et al. 2013). A statistical

model has been developed (Hewaarchchi et al. 2017) to

homogenize daily data using a Bayesian minimum de-

scription length model, which accounts for trends, met-

adata, seasonal means, and autocorrelation. The model

can be applied to any station in theGHCN-Ddataset, but

processing time is too long to apply in near–real time.

c. Overview of heat events and its impacts

Homogeneous daily data are useful for identification

and attribution of heat events over a period of time. It is

well known that homogenous global temperatures are

increasing, but more information is needed on how

extreme heat events are changing in frequency, dura-

tion, and intensity (IPCC 2013, 187–194; Melillo et al.

2014; National Academies of Sciences, Engineering,

and Medicine 2017).

There is no single universal definition of a heat event,

but it can be generalized as a period of some number of

consecutive days where conditions are excessively hot-

ter than a particular value (Perkins and Alexander 2013;

Robinson 2001). Over the years, multiple studies have

followed this rule, but with more specific definitions to

accommodate local regions and smaller time periods.

Collins et al. (2000) used subjective, absolute thresholds

to determine hot days (maximum temperature $ 358C)
and hot nights (minimum temperature $ 208C) over

a 3–5-day period over Australia. Meehl and Tebaldi

(2004) used percentile-based thresholds, which looked

at occurrences of events that exceed a threshold relative

to the area of interest. The study used the 97.5 percentile
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as the threshold for observational data, and an event

occurred if it passed this threshold for a minimum of

three consecutive days. For their study, they used two

specific heat events as baselines, the Chicago, Illinois,

heat wave of 1995 and the Paris, France, heat wave of

2003. Frich et al. (2002) developed the heat wave dura-

tion index (HWDI) based upon a fixed threshold of

58C above climatology to identify heat events. Russo

et al. (2014) argued this threshold was too high and

developed a new index, known as the heat wave mag-

nitude index (HWMI). HWMI is defined as a period

of three consecutive days or more with maximum

temperature above the 90th-percentile threshold for

the reference period of 1981–2010. A modified version

of this index is used in Russo et al. (2015) to rank the

most extreme European heat waves since 1950.

While the public may attribute heat events to only

daily maximum temperature, it is well known that daily

minimum temperatures overnight can contribute to

dangerous heat events (Pattenden et al. 2003; Trigo et al.

2005; Nicholls et al. 2008; Nairn et al. 2009). The ex-

pert team on Climate Change Detection and Indices

(ETCCDI), part of the World Meteorological Orga-

nization (WMO) Commission for Climatology (CCI),

has developed numerous core indices for identifying

heat events, using both maximum and minimum tempera-

ture. Some examples include the warm spell duration index

(WDSI), number of summer days (SU), and percentage of

days on which maximum and minimum temperature are

greater than the 90th percentile (TX90p and TN90p,

respectively). (For an extensive list of indices, along with

their definitions, see http://etccdi.pacificclimate.org/

list_27_indices.shtml.) Much work has been done iden-

tifying events using these thresholds (Alexander et al. 2006;

Fischer and Schӓr 2010; Perkins 2011; Jiang et al. 2012;

Souch and Grimmond 2004); however, some of these in-

dices have been shown to only consider single-day events,

or attribute either event duration or frequency thatmay, or

may not, be part of a heat spell (Perkins and Alexander

2013). Perkins (2011) shows that some of the thresholds,

including SU, are based on absolute thresholds, and are

not suitable for some regions, especially the tropics.

With so many indices, it can be difficult to determine

which to use. In addition, indices tend to be developed

with a particular sector in mind, such as health, agri-

culture, or energy. Perkins and Alexander (2013) sought

to investigate these variables in terms of feasibility

across varying climates, and apply a spatially uniform

comparison of occurrences. Using both absolute and

percentile-based methods, they determined that most

methods show similar results; however, they cautioned

not to select a single heat definition for all applications, and

instead to determine which definition and methodology

are best for the area in question. It should also be pointed

out that this analysis was only for Australia, which has

varying climates, but it may not be feasible in other

parts of the globe. Vaidyanathan et al. (2016) did a

thorough evaluation of multiple definitions of ex-

treme heat for various regions throughout the United

States and found that there is not one unified method

for determining health outcomes from heat events.

It is well established that extreme heat events can

have significant public health impacts, including short-

term increases in mortality and morbidity that occur

during periods of high heat, especially when events last

more than a couple days, such as the Chicago heat wave

of 1995 and the European heat wave of 2003 (Basu and

Samet 2002; Ferreira Braga et al. 2001; Sarofim et al.

2017; Mitchell et al. 2016; Basu et al. 2018). In addition,

it can exacerbate chronic health conditions in vulnerable

populations, including renal and cardiovascular issues

(Schwartz 2005; Stafoggia et al. 2006).

Attempts are being made to help in the construction

of heat vulnerability indices that use both climate and

socioeconomic data (Rinner et al. 2010; Johnson et al.

2012; Reid et al. 2012; Harlan et al. 2013). However,

research that directly connects the health impacts of spe-

cific heat events is limited. One reason is because public

health records and constituents are not organized around

an individual point but rather a geographic area, such as

census tract or county. It is important that climate data

match the boundaries defined by the public health officials

for more robust analysis. There are multiple examples of

vulnerability studies that could benefit from improved

extreme heat event analysis for larger geographic regions.

For example, Maier et al. (2014) created an extreme heat

vulnerability index focusing on the state of Georgia, which

includes both urban and rural areas. Developing a robust

understanding of the health impacts of heat events will

allow public health officials to develop adaptation mea-

sures to increase the resilience of vulnerable populations.

(Crimmins et al. 2016; Bell et al. 2018). For these reasons,

this paper will focus on the public health sector.

d. Goals of this paper

Much of the past work only focuses on identifying

events in specific regional and temporal areas. In the

United States, it is ideal to incorporate all regions (in-

cluding Alaska) and reach as far back as the early twen-

tieth century, in order to incorporate asmuch information

as possible, such as the Dust Bowl era of the 1930s. In

addition, while previous studies used temperature sta-

tions from GHCN-D, which adhere to a strict set of

quality assurance (Menne et al. 2012; Durre et al. 2010),

no daily adjustments are applied to minimize inhomo-

geneities. However, GHCN-D lays the groundwork for
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other products distributed at NCEI, including the cli-

mate divisional dataset (nClimDiv; Vose et al. 2014), the

North American monthly product (Northam; Vose et al.

2014) and the 1981–2010 normals (Arguez et al. 2012).

Some of these downstream products depict climate in-

formation in the United States as far back as 1895 and

apply homogenization and base period schemes (Menne

and Williams 2009) at monthly time scales. Therefore,

this paper has two main aims: 1) to apply these schemes

and datasets to create a homogeneous climate moni-

toring tool for the United States at time scales smaller

than 1 month and 2) to use previously applied percentile

definitions to identify changes in heat events that have

occurred in the United States since the early twentieth

century. Section 2 provides a more detailed analysis of

the datasets and methods used. Section 3 presents the

submonthly monitoring product as well as providing

an extensive analysis of the heat event database. A

discussion of applicability and assumptions will be in

section 4, and conclusions are in section 5.

2. Data and methods

a. Developing the submonthly product

This study used data from nearly 7300 GHCN-D

meteorological stations reporting daily maximum and

minimum temperature between 1901 and 2018 (Menne

et al. 2012). For a station to be considered, it must have

300 nonmissing days of data for a given year, which is

consistent with other studies (Janssen et al. 2016, 2014).

Stations must meet this 300-day criterion for 10 con-

secutive years to be added. In addition, these stations

must exist in GHCN-D (unadjusted daily values),

Northam (monthly adjustments), and the 1981–2010

normals (climatology). For stations that have less than

30 years of data, the normal is estimated using linear

combinations form neighboring stations following the

‘‘pseudonormal’’ method described in Arguez et al.

(2012). The location of each station used in this analysis,

stratified by its period of record, is provided in Fig. 1.

While most NCEI products and reports go as far back

as 1895 (Vose et al. 2014), there is a significant increase

in stations beginning in the early twentieth century.

The time period of 1901–2018 is chosen since our strict

300-day criterion does not show ubiquitous CONUS

coverage until 1901. The average length of a station is

56 years, with a median of 54 years. The number of sta-

tions over time matching the above criterion is noted in

Fig. 2. Fewer than 1000 stations are used in the early

1900s; however, there are noticeable increases in the first

few decades of the twentieth century, especially in 1948.

After 1973, there is much more variability in the number

of stations day by day, because of more dense neighbor

networks, helping to remove erroneous data through

spatial tests. A drop off in the late 2000s is also noted, as a

result of the retirement of some COOP stations.

Daily maximum and minimum temperature data

flagged by theGHCN-D quality control scheme (Menne

et al. 2012; Durre et al. 2010) are not used in this anal-

ysis. Reasons for removal include distribution checks

(climatological outliers), temporal checks (spike or

lagged range), and spatial neighbor checks. Where

available, daily average temperature is also used, de-

fined as the average of daily maximum and minimum

temperature. Monthly adjustments are provided by

Northam (Vose et al. 2014), which uses the PHA

(Menne and Williams 2009) algorithm to detect non-

climatic changepoints in the data. If available, the al-

gorithm uses available station metadata such as

instrument changes, station moves, and time of obser-

vation to help find changepoints. These changepoints

are then attributed with statistical significance to

FIG. 1. Location of stations used in analysis for (top) CONUS

and (bottom) Alaska. Stations are stratified by period of record.

Climate divisions defined by NCEI are also noted.
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determine monthly adjustments. Monthly adjustments

are then applied to their corresponding daily data, in a

method similar to Vincent and Zhang (2002). Their

work included both linear interpolation between mid-

month target values, and a direct adjustment of monthly

to daily values (the latter is applied here). While this

method can generate artificial discontinuities at the be-

ginning and ending of each month, a validation test was

performed, calculating monthly adjusted values from

daily data and comparing those numbers to the opera-

tional nClimDiv product (Vose et al. 2014). The results,

noted in Table 1, show very few differences, with root-

mean-square error (RMSE) values ranging between

0.1 and 3.0. Most of the discrepancies occur in states

occupying mountainous regions; however, r-squared

values for each state (not shown here) are still greater

than 0.9, thus providing confidence in the product.

Station adjusted values for each day are then com-

pared with their respective 1981–2010 normal provided

by Arguez et al. (2012) to obtain a daily departure from

its 30-yr mean for that day. Station values are then ag-

gregated to larger regions to provide generalized values

of temperature information. Using a point-in-polygon

approach, stations are first aggregated to 357 NCEI cli-

mate divisions, 13 of which are in Alaska. (Karl and

Koss 1984; Guttman and Quayle 1996; Vose et al. 2014).

These divisions generally have the same geographic

area, and have boundaries of which reflect multiple

considerations, including climatic conditions, county

lines, crop districts, and drainage basins. Using area

weighted averages, boundaries are then aggregated

up to larger regions. First climate divisions are ag-

gregated to state level, then the subsequent states

are aggregated to regions defined by the National Cli-

mate Assessment (NCA; Melillo et al. 2014). NCA re-

gions (Alaska excluded) are aggregated to CONUS,

for a national comparison. For spatial consistency, these

regions are fixed boundaries throughout the entire

1901–2018 period. In addition to spatial averaging, data

are also aggregated to multiple temporal scales, in-

cluding 3 days, 4 days, 1 week, and 2 weeks. While daily

calculations at each individual station are generated,

results incorporate time scales no less than 3 days, and

spatial coverage no less than NCEI climate division.

A more detailed explanation is provided in the discussion

section.

b. Analyzing heat events

Using a homogeneous record of temperature data

from 1901 to the present, heat events can then be

identified in a consistent manner. Similar to Meehl

and Tebaldi (2004), the cumulative distribution of

two temperature elements (maximum, minimum) for

a particular area is taken, and the 98th percentile of

each distribution is taken as the threshold for a much-

higher-than-normal heat event.While average temperature

data are used in the submonthly product, it is not applied

here. A distribution of each temperature element is taken

independently of each other, and all valid days reporting

temperature between 1901 and 2018 are used in generating

this threshold. It is hoped that by using the 98th percentile,

the most extreme events will be identified.

We define a heat event as a consecutive period of

3 days or more on which the daily value meets or ex-

ceeds this 98th-percentile threshold. Once an event is

found, it is characterized by the onset, length, and se-

verity. Statistics are calculated, including departure

TABLE 1. RMSE between aggregated state-averaged monthly

data (Hawaii excluded) and values fromNCEI’s nClimDiv product

(Vose et al. 2014). Monthly adjustments are applied to daily station

data and then aggregated to its respective state region.

State TMAX TMIN State TMAX TMIN

AK 1.80 1.69 NC 0.39 0.91

AL 0.29 0.65 ND 0.32 0.31

AR 0.40 0.50 NE 0.29 0.27

AZ 1.62 1.37 NH 1.60 0.96

CA 2.55 1.57 NJ 0.25 0.35

CO 2.14 0.97 NM 0.79 0.71

CT 0.73 0.57 NV 1.58 1.38

DE 0.86 0.68 NY 0.37 0.61

FL 0.53 0.82 OH 0.21 0.22

GA 0.23 0.40 OK 0.24 0.42

IA 0.12 0.19 OR 2.73 1.04

ID 3.04 1.11 PA 1.19 0.53

IL 0.39 0.17 RI 1.03 1.95

IN 0.24 0.31 SC 0.49 0.39

KS 0.16 0.14 SD 0.35 0.27

KY 0.43 0.48 TN 0.39 0.41

LA 0.26 0.36 TX 0.36 0.39

MA 0.59 0.98 UT 2.38 1.34

MD 0.62 0.97 VA 0.66 0.74

ME 1.01 1.16 VT 1.67 0.69

MI 0.57 0.46 WA 2.32 1.11

MN 0.56 1.07 WI 0.29 0.40

MO 0.25 0.26 WV 0.57 0.61

MS 0.42 0.29 WY 1.92 0.80

MT 1.43 0.58

FIG. 2. Number of stations used in analysis between 1901 and 2018.
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from normal, extreme daily maximum and minimum

temperatures, and ranks against its period of record.

The first rank includes severity of all events at that

geographic location and the second indicates the rank

of events with the same duration. These rankings are

the core information used for public dissemination,

and are similar to those reported by NCEI (2018b).

Events are identified by climate division and then ag-

gregated up to higher levels (state, NCA region, and

CONUS) to get a more generalized consensus. Trends

are calculated using both a simple linear regression,

along with the nonparametric Mann–Kendall method

(Mann 1945; Kendall 1975), which assesses the significance

of a monotonic upward or downward trend over time.

3. Results

a. Overview of the temperature monitoring product

The submonthly homogenized dataset is updated

daily in near–real-time and provides information at

the daily and weekly scale. Figure 3 provides an ex-

ample of the climate monitoring product, which is

similar to ones produced by NCEI, but at a temporal

scale shorter than 1 month. Daily maximum temper-

atures from an exceptional heat event are aggregated

over a 3-day temporal period from 24 to 27 May of

2018 and statewide spatial regions. Values are then

ranked against their period of record, and binned in

categories of warm and cold, including top record, top

10, top one-third, and then near normal or average.

According to the NCEI report (NCEI 2018b), the

entire month of May 2018 had record warm conditions

in Oklahoma, Arkansas, Missouri, Illinois, Indiana,

Ohio, Kentucky, and Virginia. However, near the end

of the month, most of the heat occurred in the upper

Midwest portion of the United States, impacting the

Dakotas, Nebraska, Minnesota, and Wisconsin. This is

reflected in the submonthly report, as these states experi-

enced a recordwarm 3-day period between 24 and 27May.

The product can also be used for mid- to long-term

climate analyses using data not tied to calendar months.

Figure 4 displays CONUS temperature departures from

their 1981–2010 mean for 2016, smoothed to a 1-week

average (red line). Monthly data from NCEI (blue

line) can be accessed through their publicly accessible

web portal but are only available at the monthly scale

(January–December). By using averages at smaller time

scales, other features can be seen, as a result of short-

term warm and cold spells. For example, according to

NCEI data, maximum temperatures were below-normal

three times in 2016 (January, May, and December).

NCEI data showed below-normal values for these

months, but were closer to zero (20.18, 20.58, 20.38C,
respectively) Using a 7-day running window, it can be

shown there were periods of much-colder-than-normal

temperatures, ranging between 1.58 and 2.58C below

normal.Also,March of 2016was the fourthwarmestmonth

on record and coincides with a strong positive phase of El

Niño–Southern Oscillation (ENSO) a few months prior.

Using a 7-day window, temperatures were as high as 58C
above normal, while the monthly report only indicated

2.78C. Seven-day averaged CONUS minimum tempera-

tures had three brief below-normal periods in January,

May, and December, the latter of which had temperatures

38C below normal. May 2016 was noted as the only month

below normal in NCEI’s monthly data (20.028C).
This submonthly analysis highlights near-real-time

daily and weekly heat events that are filtered out in

monthly reports fromNCEI. In addition to CONUS and

state information, values can be stratified by NCA re-

gions (Melillo et al. 2014). Maps are updated every day,

and it has been running since 2016. It is the hope this

product will be beneficial to many societal sectors, in-

cluding agriculture, health, and energy, who digest cli-

mate extremes at much smaller time scales than months.

(The website can be found at https://ncics.org/portfolio/

monitor/sub-monthly-temperatures/.)

b. Climatology of extreme heat events

Using the defined threshold to determine a heat event

(exceeding the 98th percentile for a period of 3 days

or more), the United States has had over 3000 maxi-

mum temperature heat events and about 2850 minimum

events since 1901. More information about a typical

event, stratified by NCA region, can be seen in Table 2.

The southwestern United States has had the most maxi-

mum temperature events since 1901 (456), and the

Southeast has had the most minimum events (446). The

average length across all regions is roughly 4 days for

both maximum (3.9) and minimum (3.8) temperature.

The average value of a maximum event in the United

States is 33.58C (92.38F); however, it varies by region,

from 23.48C (74.18F) in Alaska to 38.78C (101.78F) in the

southern Great Plains region. The variation is not as

large for minimum temperatures, but there are still dif-

ferences, with 11.58C (52.78F) in Alaska, and 23.98C
(75.08F) in the southern Great Plains. Averaged values

in the Southeast and southern Great Plains incorporate

the largest temperature values, due to the typical mari-

time tropical air mass that exists in these areas. The

average departure from the 1981–2010 mean varies

between 4.18 and 6.58C above normal for maximum

temperature, and 2.78 and 5.38C for minimum. For a max-

imum event to occur, it has to have temperatures much

higher than normal than a minimum event to exist. The
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FIG. 3. (left) Temperature ranks for CONUS andAlaska using 3 days of average temperature readings from 24 to

27May 2018. Ranks are compared with all 3-day periods of record ending on 27May and are colorized by severity.

(right) The NCEI monthly report for May 2018 (NCEI 2018b) is displayed for comparison.
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Midwest requires the largest maximum departure (6.58C),
as well as the maximum minimum departure at 5.38C.
The number of events aggregated by month can be

depicted in Fig. 5 (maximum temperature) and Fig. 6

(minimum temperature). As expected, most events oc-

cur in the summertime, although a few events occur in

early October (18 events for maximum temperature,

24 for minimum temperature), and only 8 events (max-

imum temperature) for April. While summertime is the

primary season for maximum and minimum tempera-

ture events to occur, they aremostly confined to July and

August. While there is not much variability when eval-

uating different periods, the difference from average

tells a different story. The number of events in the early

twentieth century were only slightly above average. The

Dust Bowl era can be seen in the 1931–60 graph for

maximum temperature with much-higher-than-normal event

counts, with the exception of May. There is much more var-

iability when it comes to minimum temperature event counts

during the 1931–60 period, with some months experiencing

more events than normal (June, August, September), and

some months with fewer events than normal (May, July,

October).Data since 1961 show themost changes,withmuch-

lower-than-average event counts from1961 to 1990 andmuch

higher counts for 1991–2018.This is generally the case forboth

maximum and minimum temperature, but there is a stark

difference between 1961 and 1990 (lower) and 1991 and 2018

(higher) in minimum temperature differences from average.

The spatial extent of maximum and minimum heat

events can be seen in Figs. 7 and 8, respectively. Maps

are stratified by 30-yr periods, with the exception of

the last period, which only encompasses 28 years

FIG. 4. Time series of anomalous (top) maximum temperature, and (bottom) minimum

temperature for 2016, smoothed over a 7-day period for CONUS (red line). Monthly CONUS

anomaly values from NCEI are also provided (blue line).
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(1991–2018). For each period, the number of events

are shown, along with its difference from the 1901–2018

average. Some areas in the early periods (1901–30) had no

heat events, especially in parts of the western United

States and Alaska. This is possibly due to lack of station

coverage during the early twentieth century in these areas.

A few key features are noted in maximum tempera-

ture events (Fig. 7). First, the overall highest number of

maximum temperature events occurred during 1931–60,

with most of those during the Dust Bowl period of the

1930s. Maximum temperature events were more prev-

alent thanminimum temperature during this time as this

can be seen in not only the number of events (left-top-

middle panels of Figs. 7 and 8) but with more divisions

having event counts above the average (right-top-middle

panels of Figs. 7 and 8). The highest number of events are

in theGreat Plains andMidwestern areas, althoughmuch

of the central and eastern United States has had above-

normal event counts during this period. For 1961–90, the

number of events is the smallest of the four periods, es-

pecially in areas of the Southeast, where fewer than 10

events occurred in numerous areas. This is coincident

with the observed warming hole in this area (Melillo et al.

2014). Much of the 1960s and 1970s had cooler-than-

normal temperatures in the Southeast, which resulted in

small temperature increases or even decreases in twentieth-

century temperatures for parts ofMississippi andAlabama.

For the upperMidwest, however, therewas an uptick in the

number of events, showing that even though there were

only 30–40 events in these areas, they were considered

above the average. After 1990, the number of events

increased, especially in the western parts of the United

States, as well as southern Florida. This also corresponds

with event counts higher than normal for these areas.

For minimum temperature (Fig. 8), there are not as

many events during the Dust Bowl period; however, the

period of 1931–60 has more events than both 1901–30

and 1961–90. One key characteristic is a vast increase

in the number of events over the last few decades

(1991–2018), especially in the southeasternUnited States.

Unlike maximum temperature, most of the United

States had minimum heat event counts above average

during this period.Areas along theGulf Coast, including

Texas, Louisiana, and Florida have had over 60 minimum

temperature events during this time period. This is consis-

tent with previous studies showing minimum temperatures

are rising faster than maximum (Meehl et al. 2009, 2016).

Figure 9 shows time series of the number of events,

where the climate division values have been aggregated

up to the CONUS level. Simple linear trends are pro-

vided for two time periods, 1901–2018 and 1951–2018.

The year 1951 was chosen to reflect the increase in

stations in the late 1940s and early 1950s (Fig. 2), when

more stations began reporting at airport sites. In addition,

the nonparametric Mann–Kendall test is shown to test for

monotonic increases or decreases in the data. The time

series for both maximum (Fig. 9, top panel) and minimum

(Fig. 9, middle panel), shows a general high number of

events during the 1930s, a low number in the 1960s and

1970s, and a high number again in the twenty-first century.

This is consistent with the resulting regional effects of the

Dust Bowl, southeast warming hole, and rapid twenty-first-

centurywarming, respectively. There is no significant linear

trend in the number of maximum temperature events from

1901 to 2018, but there is an increase in events from 1951

to 2018, at about 1.2 events per decade. However,

according to the Mann–Kendall test, this is not statistically

significant. There is a noticeable, statistically significant

upward trend in the number of minimum temperature

events, increasing at about 3.7 events per decade from

1901 to 2018 and 5.6 events per decade from 1951 to 2018.

To put the context of more warming minimum events than

maximum, an annual ratio of minimum temperature events

over maximum temperature events (TMIN/TMAX) is calculated

(Fig. 9, bottom panel). Here, there is a statistically significant

increase since both 1901 and 1951. This is another example

TABLE 2. Number of maximum and minimum heat events above the 98th percentile across the United States, organized by NCA region.

General statistics describing a typical event are also provided, including length, value, and severity.

Max temperature Min temperature

NCA region

No. of

events

Avg length

(days)

Avg value

(8C)
Avg anomaly

(8C)
No. of

events

Avg length

(days)

Avg value

(8C)
Avg anomaly

(8C)

Alaska 377 4.2 23.4 5.6 350 4.1 11.5 2.7

Midwest 361 3.7 33.9 6.5 340 3.5 20.9 5.3

Northeast 367 3.6 32.5 6.3 325 3.7 19.8 4.9

Northern Great Plains 319 3.7 34.5 6.0 297 3.7 16.9 4.5

Northwest 348 3.8 33.3 6.0 308 3.8 14.5 3.8

Southeast 455 4.0 35.7 4.1 446 3.8 23.2 2.9

Southern Great Plains 361 4.3 38.7 4.9 368 3.9 23.9 3.1

Southwest 456 4.0 36.3 4.3 414 4.2 18.9 3.1

Total 3044 3.9 33.5 5.5 2848 3.8 18.7 3.8
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FIG. 5. Number of maximum temperature heat events above the 98th percentile occurring for a specific month. Results are organized by

(left) count and (right) difference from the 1901–2018 average per year and split into periods of (top) 1901–30, (top middle) 1931–60,

(bottom middle) 1961–90, and (bottom) 1991–2018.
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FIG. 6. As in Fig. 5, but for minimum temperature.
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FIG. 7. Spatial extent of heat events above the 98th percentile organized by NCEI climate divisions.

Results are organized by (left)maximum temperature and (right) difference from the 1901–2018 average and

split into periods of (top) 1901–30, (topmiddle) 1931–60, (bottommiddle) 1961–90, and (bottom) 1991–2018.
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FIG. 8. As in Fig. 7, but for minimum temperature.
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FIG. 9. Number of annual heat events for (top) maximum and (middle) minimum temper-

ature, and (bottom) a ratio of minimumdivided bymaximum. Two simple linear trends are also

applied to each figure (1901–2018 and 1951–2018), in addition to the Mann–Kendall trend.
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of rapid twenty-first-century warming of minimum

temperatures, indicating the United States is seeing more

overnight minimum temperature heat events than day-

time maximum temperature events.

The average annual length of an event, aggregated

to CONUS, is plotted in Fig. 10. For most years, event

duration is between 3 and 5 days. The exception is theDust

Bowl period,where in some cases,maximumandminimum

events lasted 5–6 days. The southeast warming hole has an

effect on these figures as well, with average events only

lasting 3–4 days between 1961 and 1990. Minimum

temperatures exhibit a linear increase in event length,more

so since 1951. The slight increase in maximum temperature

is not statistically significant, with ap value of 0.07 for 1901–

2018 and 0.61 for 1951–2018. However, there is statisti-

cally significant increase inminimum temperatures with a

significance-level p values of close to zero for both time

periods, which provides confidence there is a substantial

increase in overnight minimum event length, especially

after the second half of the twentieth century.

To assess the severity of a heat event over time, the

average annual temperature anomaly (departure from

1981 to 2010) of an event is noted in Fig. 11. Maximum

temperature events typically have values between 48
and 68C, whereas minimum temperatures have a range be-

tween 28 and 48C.While minimum events are lasting longer,

their severity is changing very little. For maximum temper-

ature, they are slightly decreasing, and slightly increasing for

minimum temperature.With the exception of the 1901–2018

maximum trend decreasing, the other time series are not

increasing or decreasing at a statistically significant rate.

To examine trends at a regional level where synoptic-

scale weather patterns will dominate, climate division

counts of events were aggregated to the state level. Then

FIG. 10. Annual average length of heat events for (top) maximum and (bottom) minimum

temperature. Two simple linear trends are also applied to each figure (1901–2018 and

1951–2018), in addition to the Mann–Kendall trend.
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the nonparametric Mann–Kendall trend test was applied to

state time series. Figure 12 shows the statistical significance of

thenumber, length,andseverityofheatevent trends from1901

to 2018. For minimum temperature events, all three metrics

are increasing inmany states and only Colorado andOhio are

showing a significant decrease in count and length, whichmay

have to do with either station coverage in the early period, or

its complex terrain. The 1001-yr trends show no evidence of

the southeast warming hole for minimum temperature.

The trends in maximum temperature event metrics are

much more variable. The trends for most states are not

statistically significant. The states with statistically signif-

icant trends are approximately evenly balanced between

upward and downward trends. Those states with down-

ward trends are mostly in the western United States.

These regional trends indicate that the high number of

maximum temperature events in the 1930s approximately

cancels the recent upward trend in such events, leading to

little trend over the 1001-yr period of analysis.

To examine the effect of the 1930s on trends, trends

are also calculated between 1951 and 2018, similar

to Figs. 9–11, and are plotted in Fig. 13. Using this time

period, no state had a decreasing trend for maximum and

minimum temperature events. Maximum event counts are

increasing for 10 states and aremore prominent in themid-

Atlantic part of theUnited States. Only a few states had an

increase in maximum event length and severity; however,

the southeast warming hole still might have a factor

for maximum temperatures. For minimum temperature,

many more states show an increase in heat event count,

length and severity, with most of the southern United

States seeing increases. Florida is the exception where no

trend is observed for all three metrics.

4. Discussion

This study attempts to apply climatological ho-

mogenization techniques to evaluate daily, weekly,

FIG. 11. As in Fig. 10, but for anomaly (in degrees Celsius) of heat events.
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and monthly extreme temperature events in the United

States. While our results are similar to those of previous

studies with increases in the frequency and duration of

extreme heat events (Meehl and Tebaldi 2004), it is

believed the use of homogenization will add an extra

level of confidence in the results. Homogenization

techniques have been shown to remove artificial effects

on trend analyses and provide amore robust assessment

of long-term trends (Menne and Williams 2009;

Williams et al. 2012).

Note that although methods to apply monthly ad-

justments to daily data follow those described by

FIG. 12. State-aggregated Mann–Kendall trends (1901–2018) of (top) number of heat events, (middle) length of each event, and

(bottom) severity for (left) maximum and (right) minimum events. Statistically significant increases are in red, and statistically significant

decreases are in blue.
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Vincent and Zhang (2002), daily homogenization has

not been applied as described in Trewin (2013) and

Xu et al. (2013). Directly applying monthly adjustments

to daily data were shown by Vincent and Zhang (2002)

to have noticeable discrepancies, especially at the be-

ginning and end of each month. Their suggestion was to

add a linear interpolation method using the midpoint of

the month. Because of the robustness of the comparison

to NCEI’s nClimDiv values (Table 1), this analysis was

not performed here. Trewin (2013) also noted while

errors were similar between monthly and daily adjust-

ments of Australian data, daily methods outperformed

monthly substantially when simulating extremes, espe-

cially with minimum temperatures. Their daily methods

FIG. 13. As in Fig. 12, but for 1951–2018 trends.

2670 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/22 05:46 PM UTC



allow better handling of cases where an inhomogeneity

affects the lower and upper part of the distribution. Ideally,

to minimize these errors, daily homogenization algorithms

should be applied to detect and attribute breakpoints,

following methods similar to Trewin (2013), Xu et al.

(2013), and Hewaarchchi et al. (2017). Not only will these

methods consider numerous factors such as metadata,

trends, seasonality, and autocorrelation, they will also help

reduce the errors as described by Trewin (2013).

In addition, the applicability of monthly adjustments

to daily values will vary with weather conditions and

other factors and, thus, there will be an unknown level of

uncertainty in these estimates of short-time-scale tem-

peratures. We are counting on a substantial amount of

randomness in such variability, and by averaging over

larger areas (climate division or larger), it is hoped

to minimize these uncertainties. In addition, time of

observation issues remain. For morning observers,

maximum temperature at time of observation may

have occurred on the previous day and is sometimes un-

known. Also, double counting of minimum temperatures

can occur, especially during unusually cold mornings. By

averaging over periods no shorter than 3 days, we hope

these temporal uncertainties will be minimized.

Previous studies on heat events have considered in-

corporating both temperature and humidity informa-

tion. Some humidity metrics include dewpoint, apparent

temperature (Steadman 1984), heat index, and wet-bulb

globe temperature. While this dataset only incorporates

direct reports of maximum and minimum temperatures,

it has an advantage of homogenization, removing non-

climatic influences in these data. Humidity data are more

limited in availability, especially in earlier time periods.

Numerous datasets depict the long-term trend of global

surface temperatures, but relatively few include surface

humidity. Also, similar to temperature, instrumentation

changes in humidity can generate long-term biases in the

analysis. Over time, sling psychrometers were replaced

with chilled mirror hygrometers and can show artificial

breakpoints in the data that would skew results. While

homogenization methods have been tested to radio-

sonde humidity data (Dai et al. 2011), no such homog-

enization methods have been applied to monthly or

daily in situ dewpoint data across the United States.

Studies have also considered higher temporal scales,

such as hourly and subhourly. Note that NOAA’s NCEI

does archive hourly observations of temperature and

dewpoint in a dataset known as the Integrated Sur-

faceDataset (ISD; Smith et al. 2011); however, they only

have ubiquitous CONUS coverage starting in 1948.

In addition, these data have not gone through the same

quality assurance described byDurre et al. (2010). Dunn

et al. (2012, 2016) developed a complete suite of quality

assurance checks on ISD data, however, only go as far

back as 1931. An effort was also made to homogenize

the hourly database back to 1973 (Dunn et al. 2014);

however, it was shown that not all stations could be

homogenized, and numerous stations were removed,

because of the lack of sufficient neighbor data.

The high 98th-percentile threshold used in this study

to assess extreme events will exclude events identified

in other studies that utilize fewer extreme thresholds

such as the 90th or 95th percentile. Also, by taking the

distribution of actual temperatures, rather than their

departures from a mean, results are skewed toward the

summer months, as noted in Figs. 5 and 6. Early- and

late-season events may be missed as a result of this. For

example, March 2012 was a remarkably warmmonth for

most of the United States, with temperatures 58–158C
above normal. However, with temperature values only

between 258 and 308C (778–868F), they are lower than

their 98th-percentile thresholds, and thus not included

in this database. Lowering the threshold, or taking the

distribution of anomalies, may include events in the

early spring and late fall, events that the public may not

necessarily be prepared for. It should also be noted while

the frequency of a single day above the 98th percentile is

spatially ubiquitous, the frequency of three days in a row

is not. Rather, it is a function of the autocorrelation of

daily temperatures at the location, possibly due to re-

gional effects such as synoptic weather conditions. As a

result, care should be taken when comparing results in

different geographic areas.

The number of stations over time may also affect re-

sults. Ubiquitous CONUS coverage existed back in

1901, but there were not as many stations as there are

today (Fig. 2). With the expansion of the COOP pro-

gram, as well as the installation of newer networks

such as ASOS and the USCRN (Diamond et al. 2013),

the number of stations has changed over time, as can be

seen in Fig. 2. While a 300-day minimum threshold was

applied on stations for 10 consecutive years, this spatial

uncertainty could not only miss events in the early

twentieth century, but it could affect trend analysis go-

ing back to 1901. As a result, the period of 1951–2018

were chosen for additional trend analysis, as there

were over 3000 stations in existence by 1951. In addi-

tion, a separate analysis was performed, using stations

that matched the 300-day criterion for 100 consecutive

years. Results (not shown here) showed the underlying

CONUS trends in heat event, length, and severity did

not change much. It should also be pointed out while

Alaska does have data from the early twentieth century,

operational products from NCEI only go back to 1925

for the state. As a result, trend analysis for Alaska is not

applied (Figs. 9–13), even for 1951–2018.
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5. Summary

Using authoritative data archived by NCEI and asso-

ciated homogenization techniques, a monitoring dataset

of temperature values shorter than the monthly scale is

provided. (The current version can be found at https://

ncics.org/portfolio/monitor/sub-monthly-temperatures/.)

This state-of-the-art dataset accounts for nonclimatic

changes in temperature and has data for CONUS since

1901.Using this homogenized dataset, the 98th percentile

for each region is calculated and used to identify ex-

treme heat events between 1901 to the present in

numerous regions. Most of CONUS has experienced

an increase in temperature events, in both number

and length. Minimum events are increasing at a faster

rate and are prevalent to an upward trend in overnight

temperatures, especially in the southeastern United

States. The trends in maximum temperature events are

much more variable and were greatly influenced by an

anomalously high number of events during the 1930s.

Calculating trends starting with 1951, after the Dust

Bowl era, results in an increase in the number of states

with positive trends increased and no decreasing trends.

The results of this study show a homogenized data re-

cord can be useful in not only providing an assessment of

temperature at the submonthly scale, but also identify-

ing the historical significance of heat events. It is hoped

this database can be used to assist other sectors (energy,

agriculture, human health, etc.) with linking extreme

heat events to available nonmeteorological data.
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